Difference between revisions of "Poder expressivo dos operadores clássicos"
Jump to navigation
Jump to search
m Tag: 2017 source edit |
m Tag: 2017 source edit |
||
Line 12: | Line 12: | ||
== Links externos == | == Links externos == | ||
− | * Dos fragmentos da Lógica Proposicional Clássica:<!-- | + | * Dos ''fragmentos'' da Lógica Proposicional Clássica:<!-- |
--><p>[https://en.wikipedia.org/wiki/Post%27s_lattice Reticulado de Post]</p> | --><p>[https://en.wikipedia.org/wiki/Post%27s_lattice Reticulado de Post]</p> |
Revision as of 21:30, 3 September 2020
- O conjunto dos operadores clássicos é funcionalmente completo sobre Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{0,1\}}
, isto é, permite expressar qualquer operador Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n}
-ário Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2}
-valorado
[AGUARDE!]
Para reflexão
- De que forma poderíamos caracterizar o poder expressivo dos operadores intuicionistas?
Veja também
Links externos
- Dos fragmentos da Lógica Proposicional Clássica: