Somatório e Produtório

From Logic Wiki
Revision as of 03:16, 10 December 2015 by Francleidepsimao (talk | contribs)
Jump to navigation Jump to search

O somatório representa somas com termos, para sua representação utiliza-se o símbolo sigma onde i representa o termo inicial da soma e n o termo final da soma. Ele geralmente é utilizado na resolução de problemas de recorrência.


Propriedades de Somatório

, onde C é uma constante.

, note que

progressão aritmética.



Principais representações

Soma simples

Soma de quadrados

Quadrado da soma

Soma de produtos

Produtos das somas


Aplicação das Propriedades

Alguns exemplos de aplicações das propriedades do somatório:

Exemplo 1

Utilize as propriedades de notação de somatório e, possivelmente, mudança de índice para deduzir que é igual a , onde é uma sequência de números reais. Este tipo de soma é bastante conhecida em Matemática como soma telescópica.

Resolução


Expandindo vezes:

Exemplo 2

O objetivo deste problema é encontrar uma fórmula fechada para


Para tal, note que


Logo,


Então, utilize o resultado do problema conhecido como "soma telescópia" do exemplo 1 para encontrar a fórmula desejada.

Resolução


Pela fórmula da soma telescópica

Exemplo 3

Utilize as propriedades de notação de somatório e os seus conhecimentos de soma de termos de uma PA para calcular

de forma distinta daquela usada no problema anterior. Qual das duas soluções lhe parece mais fácil?

Resolução

Exemplo 4

Suprimindo um dos elementos do conjunto {}, a média aritmética dos elementos

16,1. Determine o valor de n e qual foi o elemento suprimido do conjunto para o cálculo da média.

Resolução

média aritmética é dada por :

média aritmética de



usando a função de calculo da média:

Substituindo na equação:

Portanto o termo omitido foi:

Exemplo 5

Encontre uma fórmula fechada

onde .

Resolução

Temos:

Incompleto

Exemplo 6

Calcule a soma

onde

Resolução

Separando o somatório:

Temos:

e teremos que descobrir o

então

Incompleto

Exemplo 7

Os números

podem pertencer a uma mesma progressão aritmética?

Resolução

Assumindo uma PA

os termos pertencem a essa progressão se pela propriedade da progressão aritmética a média aritmética dos termos da ponta de uma sequencia (a, b e c) for igual a o termo do meio:


Portanto não pertencem a mesma progressão aritmética.



Provas de algumas propriedades

Multiplicação por constante

, onde C é uma constante.

Passo base: s = t

, pela definição de somatório.

Passo indutivo: s < t

Suponha que para um arbitrário:

(Hipótese de indução)


Para , assumindo o lado esquerdo da equação, temos:

, pela definição de somatório.


Aplicando a HI:


Expandindo vezes:


Colocando em evidência:


Portanto:

, onde C é uma constante, .


Mudança de índices

Passo base: s = t

, pela definição de somatório.

Passo indutivo: s < t

Suponha que para um arbitrário:

(Hipótese de indução)


Para , assumindo o lado esquerdo da equação, temos:

, pela definição de somatório.


Aplicando a HI:


Expandindo vezes:

, uma vez que existem termos.


Portanto:

.


Somatório em Linguagem Funcional

Elixir[1]

defmodule FMC do
  def somatorio(start \\0, finish, callback)

  def somatorio(start, finish, callback) when start == finish do
    callback.(start)
  end

  def somatorio(start, finish, callback) do
    _somatorio(Enum.to_list(start..finish), callback)
  end

  defp _somatorio([], _), do: 0
  defp _somatorio([head | tail], callback) do
    callback.(head) + _somatorio(tail, callback)
  end
end

Referências


Autores

Jaimerson Araújo

Francleide Simão