Difference between revisions of "Contagem"

From Logic Wiki
Jump to navigation Jump to search
Line 517: Line 517:
 
  '''''LargestExpon(1007); '''''
 
  '''''LargestExpon(1007); '''''
 
  '''''LargestExpon(1009); '''''
 
  '''''LargestExpon(1009); '''''
 +
 +
=====5 . Estime a probabilidade que dois inteiros escolhidos aleatoriamente sejam relativamente primos testando um grande números de pares de inteiros aleatoriamente selecionados. Observe o teorema que dá essa probabilidade e compare seus resultados com a probabilidade correta.=====
 +
Solução
 +
Para resolver esse problema, três coisas devem ser feitas.
 +
#Crie um método para gerar pares de inteiros aleatórios.
 +
#Produza um grande número desses pares, testando se eles são relativamente primos, e observe a probabilidade estimada baseada nessa amostra.
 +
#Observe o teorema mencionado em questão.
 +
 +
 +
Naturalmente, nós deixaremos a parte 3 inteiramente para o leitor.
 +
Uma simples aproximação é usar o procedimento do Maple “rand” para gerar uma lista de inteiros aleatórios. Então, tendo gerado tal lista nós podemos testar a coprimalidade de seus membros em pares usando o procedimento Maple “igcd” em um segundo loop. Nós implementamos esses dois loops em um novo procedimento Maple chamado “RandPairs”:
 +
'''''RandPairs := proc(list_size::integer) '''''
 +
'''''  local i, tmp, randnums, count; '''''
 +
'''''  randnums := NULL; '''''
 +
Gera a lista de inteiros aleatórios
 +
''''' for i from 1 to list_size do '''''
 +
'''''    tmp := rand(); '''''
 +
'''''    randnums := randnums, tmp(); '''''
 +
'''''  od; '''''
 +
'''''  randnums := [randnums]; '''''
 +
Conta o números de pares que são coprimos
 +
''''' count := 0; '''''
 +
'''''  for i from 1 by 2 to list_size-1 do '''''
 +
'''''    if igcd(randnums[i], randnums[i + 1]) = 1 then '''''
 +
'''''      count := count + 1; '''''
 +
'''''    fi; '''''
 +
'''''  od; '''''
 +
'''''  count; '''''
 +
'''''end: '''''
 +
Podemos agora executar esse procedimento em 1000 pares de inteiros, como a seguir:
 +
'''''RandPairs(200); '''''
 +
Então, podemos determinar a porcentagem de pares coprimos usando esse resultado.
 +
'''''evalf(RandPairs(200)/100); '''''
 +
Observe que repetindo a computação idêntica pode muito bem levar a um resultado de certa forma diferente já que a lista de inteiros que usamos foi gerada aleatoriamente. Você deve tentar isso como uma amostra de tamanho muito maior, digamos 10000 pares de inteiros.

Revision as of 22:35, 8 December 2015

A contagem é fundamental para o estudo da matemática discreta, a complexidade de algoritmos, combinatórios, e alguns ramos da álgebra tais como a teoria do grupo finito. Este capítulo apresenta uma variedade de técnicas que estão disponíveis no Maple para contar uma coleção diversa de objetos discretos, incluindo combinações e permutações de conjuntos finitos. Objetos podem ser contados usando fórmulas ou outros algoritmos, ou listando-os e observando diretamente o tamanho da lista. A última abordagem por um número de procedimentos Maple que pode ser usado para gerar estruturas combinatórias.

A maioria dos procedimentos Maple relevantes a este capítulo pertence em um ou dois pacotes. O pacote “combinat” é a parte padrão da versão da biblioteca 3Maple.

Um novo pacote “combstruct” está disponível como uma biblioteca compartilhada para MapleV, versão 3, e é um pacote padrão da versão 4. Você pode acessar os serviços oferecidos por qualquer um desses pacotes usando o comando “with” para carregá-lo na sua sessão Maple. (Se você está usando Maple V, versão 3, você também deve colocar with(share) antes de digitar with(combstruct)).

É útil saber que o pacote combstruct, enquanto provê uma grande variedade de procedimentos, organiza algumas das funções básicas em grupos relacionados a um objeto combinatório particular (como, por exemplo, combinações ou partições). Para muitos tipos de objetos combinatórios, existem procedimentos Maple para fazer as seguintes operações.

  1. Você pode construir todos os objetos daquele tipo associado a um inteiro dado. Ao procedimento para fazer isso é geralmente dado um nome refletindo o tipo de objeto. (Por exemplo, “permute” and “partitions”.)
  2. Você pode contar todos os objetos daquele tipo associado a um inteiro dado. Aqueles procedimentos geralmente começão com a string “numb” e são completados por uma abreviaçãodo tipo de objeto sendo contado. (Por exemplo, “numbperm” e “numbpart”.)
  3. Você pode gerar um objeto aleatório daquele tipo associado a um inteiro dado. Uma abreviação do tipo de objeto sendo gerado, prefixado com a string “rand” é como essas rotinas são normalmente nomeadas. (Por exemplo, “randperm” e “randpart”.)


Claro, também existem muitas outras funções que não se encaixam neste esquema.

1. Funções Maple relevantes

O pacote “combinat” contém muitas funções pertinentes à contagem e geração de estruturas combinatórias. A lista de funções neste pacote é:

with(combinat);

Existe outro pacote, “combstruct”, disponível no Maple V, versão 4, que também lida com estruturas combinatórias. A maior parte do que este pacote faz está além do escopo deste livro, mas algumas de suas funções expandem o que o pacote “combinat” faz. O pacote “combstruct” fornece funções “interstructs”.

count Para contar o número de objetos de um dado tamanho
draw Para gerar um objeto aleatório de um dado tamanho
allstructs Para gerar todos os objetos de um dado tamanho
iterstructs Para gerar a “próxima” estrutura de um dado tamanho

As estruturas relevantes que “combstruct” pode lidar são permutação, combinação/subconjunto, partição.

Para acessar os serviços fornecidos pelo pacote “combstruct”, digite:

with(combstruct);

Se você estiver usando a versão 3 do Maple, primeiramente você terá que utilizar o comando “with(share)”, já que o pacote “combstruct” é parte da biblioteca na versão 3.

As funções no pacote “combinat” para combinações são “numbcomb”, “choose”, e “randcomb”. Este é o número de formas de escolher duas frutas a partir de uma maçã, uma laranja e uma pera.

numbcomb([apple, orange, pear], 2);

Aqui estão as possíveis escolhas:

choose([apple, orange, pear], 2);

A função “numbcomb” conta o número de combinações (ou r-combinações) de um conjunto. A função “choose” lista as combinações. Portanto sempre existirão elementos “numbcomb” listados por “choose”.

nops(%);

E se tivermos duas maçãs e nenhuma pêra (um exemplo com elementos indistinguíveis):

numbcomb([apple, apple, orange],2);

Com as escolhas:

choose([apple, apple, orange],2);

Se nós não fornecemos o segundo argumento, todas as combinações possíveis de todos os tamanhos possíveis são consideradas.

numbcomb([apple, apple, orange]);
choose([apple, apple, orange]);

Nós também podemos escolher combinações aleatórias.

randcomb([chocolate, vanilla, cookiedough],2);
randcomb(5,3);

Neste exemplo, o 5 representa o conjunto .

Usando combstruct, nós resolveríamos os problemas acima da seguinte forma:

count(Combination([apple,orange,pear]),size=2);
allstructs(Combination([apple,orange,pear]), size=2);
draw(Combination([chocolate,vanilla,cookiedough]),size=2);

Coeficientes binomiais podem ser calculados tanto chamando a função numbcomb como um inteiro como primeiro argumento,

numbcomb(10,5);

ou nós podemos calcular , usando a função binomial. Então nós resolvemos o exemplo 7 na seção 4.3 da seguinte forma:

binomial(10,5);

Quando n e r são inteiros não negativos e , binomial e numbcomb se comportam de forma idêntica. O procedimento binomial é mais geral, e expande a definição dos coeficientes binomiais. Não vamos discutir seu uso mais geral aqui.

2. Mais funções combinatórias

Nesta seção, vamos discutir algumas funções combinatórias, úteis na contagem, que surgem como coeficientes de certos polinomiais.

2.1. Coeficientes binomiais

Os coeficientes binomiais que são coeficientes do polinomial quando este é expandido.

for n from 1 to 7 do
sort(expand((a + b)^n));
od;'

Esses números podem ser acessados diretamente no Maple usando a função “binomial” da biblioteca Maple.

for n from 1 to 7 do
seq(binomial(n, k), k = 0..n);
od;

O valor do binomial(n, k) é o coeficiente do termo binomial (que é igual ao coeficiente de ) na expansão de . Dados argumentos numéricos, “binomial” resulta em um número.

binomial(100,53);

Entretanto, se é dado um argumento simbólico, “binomial” retorna indeterminado.

n := 'n': # clear values
k := 'k': # from n and k
binomial(n, 9);

Você pode expressar isso como uma função racional da variável “n” chamando “expand”.

expand(%);

Entretanto, isso funciona apenas se no máximo um dos argumentos for simbólico.

binomial(n, k);
expand(%);

Para determinar a definição, nos termos de fatoriais, você pode usar o comando multifacetado “convert”.

convert(binomial(n, k), factorial);

O procedimento “convert” é uma utilidade de conversão de propósito geral que pode ser usado para transformar expressões de uma forma para outra, equivalente. Aqui, transforma uma instrução simbólica envolvendo a chamada do procedimento “binomial”, para uma equivalente expressada usando fatoriais. Devido a “convert” aceitar uma grande variedade de tipos de argumentos, sua documentação é espalhada sobre muitas das páginas de ajuda online.Mas um bom lugar para começar a encontrar mais sobre “convert”, é a página principal de ajuda para este comando, acessada digitando “?convert”. Essa facilidade pode ser usada para provar identidades combinatórias envolvendo os coeficientes binomiais. Um pouco de cuidado é necessário, entretanto, para levar em conta o grau de avaliação que é realizado a cada passo, deixa coisas que são iguais não serem reconhecidas como tais. Por exemplo, essa identidade famosa pode ser provada da seguinte forma.

left := binomial(n, k);
right := binomial(n, n - k);

Queremos provar a esquerda e a direita são iguais. Note que

evalb(left = right);

isso ocorre porque esquerda e direita foram avaliadas de forma insuficiente até o momento. Para superar esta falta de reconhecimento, nós usamos “convert”.

left := convert(left, factorial);
right := convert(right, factorial);
evalb(left = right);

Geralmente existe uma certa quantidade de adivinhação envolvida em coagir expressões simbólicas para a forma que é útil para um dado problema. Maple é designado para permitir que você facilmente experimente com expressões, para que você possa descobrir a forma certa para uma aplicação particular.

2.2. Coeficientes multinomiais

Para computar o números de permutações de um conjunto finito em que alguns membros são indistinguíveis do outros (tal conjunto é geralmente chamado um multiset), Maple fornece o procedimento multinomial no pacote combinat. Ele calcula os coeficientes multinomiais, isto é, números da forma em cada existem inteiros não negativos cuja soma é n. O primeiro argumento para multinomial é o inteiro n, enquanto os argumentos restantes são os números do denominador.

Por exemplo, permita-nos computar o número de strings distintas obtidas pela permutação das letras da palavra “MISSISSIPPI” (um exemplo clássico). Aqui existe 1M, e existem 4 Is, 4 Ss, e 2 Ps. Isso dá um total de 11 caracteres. Portanto, o número de strings distintas é

combinat[multinomial](11, 1, 4, 4, 2);

Observe que o primeiro argumento deve ser a soma dos argumentos restantes; caso contrário um erro é indicado.

combinat[multinomial](11, 1, 4, 4, 3);

O coeficiente multinomial exibido acima é chamado coeficiente porque ele é o coeficiente do multinomial na expansão do polinomial . Nós podemos ver alguns exemplos disso usando Maple. (Usaremos as variáveis a, b, c, e assim por diante, já que são mais fáceis de se ler que x1, x2, x3, etc.)

p := (a + b + c)^5;
p := expand(p);

Existe uma função “coeff” que extrai o coeficiente de uma variável num polinomial.

coeff(x^3 - 5*x^2 + 2, x^2);
coeff(x^3 - 5*x^2 + 2, x);

Entretanto, isso apenas funciona com polinomiais invariáveis. Você pode, todavia, acessar os multinomiais individuais em um polinomial multivariado, usando o comando “op”.

op(3, p);
op(p);

Isso, infelizmente, depende da ordenação dos multinomiais no polinomial p fazendo isso impossível de prever qual dentro dos multinomiais em p será extraída. Para contornar este problema, use o comando sort primeiro.

p := sort(p);
op(3, p);
terms := [op(p)];

Os multinomiais são ordenados lexicograficamente . Para reparar a deficiência em coeff que o impede de manusear polinomiais multivariados, nós podemos escrever nossa própria rotina, mcoeff que faz esse trabalho para nós. Já que coeff é implementada no kernel Maple, não é possível para um usuário redefinir seu comportamento, então é necessária uma rotina separada. Para simplicidade, nosso procedimento mcoeff vai apenas lidar com polinomiais com coeficientes numéricos. O algoritmo usado aqui é o seguinte:

  1. insira um polinomial “p” e um termo multinomial term.
  2. processe p da seguinte:
    1. ordene p em q
    2. crie uma lista r de termos multinomiais em q.
    3. crie um multiset m consistido de multinomiais em q com multiplicidade igual ao coeficiente. (Note que isso não é um multiset verdade, como o coeficiente pode ser negativo ou não integral.)
  3. procure a lista m para uma entrada combinando term e, se encontrada, retorne o coeficiente. Caso contrário, retorne 0.


Aqui, então, está o código Maple para “mcoeff”.

mcoeff := proc(p::polynom, term::polynom)
  local m, # list of multinomials
        t, # index into m
        x, # dummy variable
        q, # sorted input
        r; # multiset of multinomials and coefficients
  q := sort(p); r := [op(q)];
  m := map(x -> [coeffs(x), x / coeffs(x)], r);
  for t in m do
    if term = op(2, t) then RETURN(op(1, t)); fi;
  od;
  RETURN(0);
end:

Por exemplo, para alocar o coeficiente de no polinomial multivariado , podemos usar mcoeff da seguinte maneira:

p := (a + b + c)^5;
p := expand(p);
mcoeff(p, a^2 * b^3);

Solicitar o coeficiente de um multinomial que não esteja no polinomial resulta em zero.

mcoeff(p, x^5);

Se a entrada polinomial p é um polinomial em uma única variável, então a chamada mcoeff(p, x^n) é equivalente à chama coeff(p, x^n) ou coeff(p, x, n). (A sintaxe da chamada no último estilo não é suportada por mcoeff.)

mcoeff(x^3 - 2*x^2 + 1, x^2);
coeff(x^3 - 2*x^2 + 1, x^2);
coeff(x^3 - 2*x^2 + 1, x, 2);

A rotina mcoeff fornece outros meios em que nós podemos determinar coeficientes multinomiais. Por exemplo:

with(combinat):
multinomial(6, 1, 2, 3);
p := expand((a + b + c)^6);
mcoeff(p, a * b^2 * c^3);


2.3. Números Stirling

Outro conjunto combinatório de números significante que surge como o conjunto de coeficientes de polinomiais especiais é o conjunto de números Stirling. O polinomial Stirling de grau “n” é definido por:

Quando expandido, tem a forma:

Os coeficientes , para , são chamados de números Stirling (do primeiro tipo).

Podemos usar Maple para gerar os polinomiais Stirling da seguinte forma.

n := 'n'; i := 'i';
S(n) := product(x - i, i = 0..n-1);

Essa expressão Maple insiste em exibir com o uso da função Gamma .

A função Gamma é uma extensão contínua da função fatorial para números reais. Para um inteiro não negativo n, nós temos . Mas, para valores específicos de n, podemos coagir Maple a representar os polinomiais de Stirling como polinomiais, usando simplify.

subs(n = 9, S(n));
simplify(%);
expand(%);
sort(%);
coeffs(%);
[%];

Portanto, nós temos uma lista de números Stirling , para . Você pode acessar os números de Stirling diretamente no Maple, usando a função stirling1 no pacote combinat.

with(combinat):
for n from 1 to 7 do
  seq(stirling1(n,i), i = 1..n);
od;

Existem alguns padrões interessantes no triângulo resultante. Tente computar mais números de Stirling e veja se você pode fazer quaisquer conjecturas sobre os padrões que você vê.

3. Permutações

Nós já mostramos como contar e gerar combinações usando Maple. Podemos agora introduzir recursos análogos do Maple para trabalhar com permutações. As funções Maple correspondentes para permutações são “numbperm”, “permute” e “randperm”. Já que todas estão no pacotes “combinat”, devem ser carregadas antes de serem usadas.

with(combinat):
numbperm([S,U,C,C,E,S,S]);
permute([a,b,c]);
randperm([S,U,C,C,E,S,S]);
randperm(5);

Usando o pacote “combstruct”, esses exemplos são feitos da seguinte forma:

with(combstruct):
count(Permutation([S,U,C,C,E,S,S]));
allstructs(Permutation([a,b,c]));
draw(Permutation(5));

A função “subsets” permite gerar todos os subconjuntos de um conjunto dado. Já que os subconjuntos e combinações são apenas diferentes nomes para a mesma coisa, você pode usar essa função para gerar combinações. A função “subsets” retorna uma tabela que contém duas entradas. Uma é chamada “nextvalue”, e é um procedimento para gerar a próxima combinação, e a outra é “finished”, uma flag true/flase que informa quando todas elas foram geradas.

S := combinat[subsets](a,b):
while not S[finished] do
  S[nextvalue]();
od;

Usando “combstruct”, uma faz a mesma coisa usando a função “iterstructs”. O procedimento “iterstructs” também retorna uma tabela, mas dessa vez usa as funções “next” e “finished” para iterar.

S := iterstructs(Subset(a,b)):
while not finished(S) do
  nextstruct(S);
od;

Usando “iterstructs”, podemos também iterar sobre permutações e tradições. Em adição, nós podemos especificar que tamanho de objeto nós queremos ver.

P := iterstructs(Permutation([a,b,b]), size=2):
while not finished(P) do
  nextstruct(P);
od;

Pelo fatos das função de permutação Maple poderem resolver problemas de permutação com elementos indistinguíveis tão facilmente quanto sem elementos indistinguíveis, alguns dos exercícios do texto se tornam triviais. Por exemplo, exercício 266 pergunta quantas strings diferentes podem ser formadas com as letras em MISSISSIPPI usando todas as letras. A solução pode ser encontrada em um passo: numbperm([M,I,S,S,I,S,S,I,P,P,I]); A questão 299 é similar, mas envolve alguns passos extras. Ela pergunta quantas strings diferentes podem ser feitas a partir das letras em ORONO, usando uma ou todas as letras. Para achar a solução, primeiramente calculamos o número de 1-permutações, depois com 2-permutações, etc.

total := 0:
for i from 1 to 5 do
     total := total + numbperm([O,R,O,N,O],i);
od:
total;

Existem 633 strings possíveis usando uma ou todas as letras em ORONO. 644 se nós contarmos as string com 0 letras. numbperm([O,R,O,N,O],0); Usando o pacote “combstruct”, nós podemos achar a resposta em um passo.

with(combstruct):
count(Permutation([O,R,O,N,O]), size='allsizes');

Entretanto, a maior parte dessa sessão envolve pensar e entender a questão. Maple pode ajudar a calcular os números de permutações e combinações, mas cabe a você decidir que valores você precisa calcular para encontrar a resposta.

3.1. Partições de Inteiros

Também existem funções para fazer partições de inteiros. (Uma partição de inteiro é um modo de escrever um inteiro n como a soma de inteiros positivos, onde ordem não importa. Então é uma partição de inteiro do 5.) Junto ao numbpart, partition e randpart, existem funções para gerar partições, uma por vez, baseada em uma dada ordem canônica. Todas estas funções são parte do pacote combinat que deve, consequentemente, ser carregado antes de você acessá-las.

with(combinat):

O número de partições de um dado inteiro pode ser contado usando o procedimento “numbpart”.

seq(numbpart(i), i = 1..20);

As partições de um inteiro podem ser computadas usando a função “partition”.

partition(5);

Isso constrói as partições de seu argumento como uma lista de listas, cada sublista representando uma partição.

Como seu nome sugere, randpart simplesmente cria uma partição aleatória de um inteiro. randpart(20); Maple provê funções especiais para gerar a sequencia de todas as partições de um inteiro dado. Portanto, nós temos as rotinas firstpart, nextpart, prevpart e lastpart.

firstpart(4);
nextpart(%);
nextpart(%);
prevpart(%);
nextpart(%%);
lastpart(4);

4. Probabilidade discreta

Para encontrar a probabilidade de um evento numa amostra de espaço finita, calcula-se o número de vezes que o evento ocorre, e divide-se pelo número total de resultados possíveis (o tamanho do espaço de amostra).

Como no exemplo 4, seção 4.4, nós calculamos a probabilidade de ganhar na loteria, onde precisamos escolher 6 números corretamente de 40 números possíveis. O número total de maneiras de escolher 6 números é:

numbcomb(40,6);

e existe uma combinação vencedora. Portanto a probabilidade é

1/%;

a qual nós podemos ver como uma aproximação de um número real usando a função “evalf” - avaliação como um número de ponto flutuante.

evalf(%);

Nós também podemos forçar uma aproximação decimal do resultado usando 1.0, ou simplesmente 1., para mostrar que nós desejamos trabalhar com decimais em vez da representação racional exata. Por exemplo, se precisarmos escolher de 50 números, a probabilidade é:

1./numbcomb(50,6);

Para outro exemplo do uso do Maple no estudo da probabilidade discreta, permita-nos usar Maple para verificar a asserção no exemplo 144 na página 278 do texto. A afirmação é que o valor esperado do número de sucessos para “n” tentativas Bernoulli, cada uma com a probabilidade “p” de sucesso, é “np”. Nós usaremos “EV” para denotar o valor esperado em Maple. (Nós não podemos usar “E” porque aquele símbolo é reservado para a base do logaritmo natural.) Nós sabemos que

p(X=k) := binomial(n, k) * p^k * (1 - p)^(n - k);

A partir da definição, nós temos

EV(X) := sum(k * p(X=k), k = 1..n);
simplify(%);

5. Gerando combinações e permutações

Aqui está uma implementação do algoritmo para gerar a próxima r-combinação (exemplo 5).

NextrCombination := proc(current, n, r)
local next, i, j;

faça uma cópia que possamos mudar

next := table(current);
  i := r;
  while next[i] = n - r + i do i := i -1 od;
  next[i] := next[i] + 1;
  for j from i+1 to r do
    next[j] := next[i] + j - i;
  od;
  [seq( next[i], i=1..r) ];  # return the answer
end:

Teste-a no exemplo.

NextrCombination([1,2,5,6], 6, 4);
NextrCombination(%,6,4);
NextrCombination(%,6,4);

Alguma explicação é necessária. Primeiro, a combinação atual é uma lista, não um conjunto. Isso é porque a lista é ordenada, mas um conjunto é desordenado. Para encontrar a “next” combinação, nós precisamos saber a ordem dos elementos na combinação atual. Mas no Maple, a ordem que digitamos um conjunto e a ordem que aparece dentro do Maple não são necessariamente a mesma coisa.

pear, orange, apple;

Mas ela sempre a mesma para uma lista.

[pear,orange,apple];

O próximo problema é que você não pode, antes da versão 4 do Maple V, atribuir um elemento específico dentro de uma lista.

mylist := [a,b,c,d]:
mylist[2] := e;

Então, a primeira coisa que fazemos nesse algoritmo é fazer uma tabela que contém todos os elementos na combinação. Nós podemos atribuir na tabela, então nosso problema acaba.

mytable := table(mylist);
mytable[2] := e;
print(mytable);

Com o pacote “combstruct”, você pode criar um iterador que vai produzir todos os objetos de um certo tamanho, um por vez.

it := iterstructs(Combination(6),size=4):
nextstruct(it);
nextstruct(it);
nextstruct(it);

Chamando essa função algumas vezes mais, nos leva a:

nextstruct(it);

onde a próxima 4-combinação é então:

nextstruct(it);

pela qual nós podemos ver que esse iterador está usando a mesma lexicografia ordenando como usamos no algoritmo 3.

6. Computações e explorações

1. (Projetos de computador) Dado um inteiro positivo “n”, encontre a probabilidade de selecionar seis inteiros do conjunto { ${\displaystyle 1,\cdots ,n}} que foram mecânicamente selecionados em uma loteria.

Solução Nós seguiremos o exemplo 4 no texto. O número total de maneiras de escolher 6 números de “n” números é , que pode ser encontrado com o procedimento “numbcomb” no pacote “combinat”. Isso nos dá o número total de possibilidades, onde apenas uma irá vencer.

Lottery := proc(n::posint) 
local total; 
   total := combinat[numbcomb](n, 6); 
   1.0 / total; 
end: 
Lottery(49); 

Se as regras da loteria mudarem, para que o número de números escolhidos seja algo diferente de 6, então nós devemos modificar o procedimento acima. (Por exemplo, talvez agora possamos escolher 5 números de 499, em vez de 6.) Nós podemos facilmente modificar nosso programa para nos deixar especificar quantos números nós queremos escolher adicionando outro parâmetro.

Lottery2 := proc(n::posint, k::posint) 
local total; 
     total := combinat[numbcomb](n,k); 
     1.0 / total;  
end: 
Lottery2(49,6); 
Lottery(30,3); 
2. Dados inteiros positivos “n” e “r”, liste todas as r-combinações, com repetições permitidas, do conjunto .

Solução A função “choose” do Maple (no pacote “combinat”), vai listar todas as r-combinações de, mas sem repetições. Portanto nós não podemos usá-la diretamente. Entretanto, digamos que queremos todas as 2-combinações de, com repetições. Isso quer dizer que junto com , e , nós também queremos incluir, e . Nós queremos ser capazes de escolher cada número até 2 vezes. (Nós dizemos que podemos repetir um elemento qualquer número de vezes, mas na prática, já que nós apenas podemos escolher 2 coisas no total, nós só precisamos permitir cada número aparecer no máximo 2 vezes.) Então outra forma de olhar o problema é dizer que queremos todas as 2-combinações, sem repetição, do conjunto. Em geral, então, nós podemos encontrar todas as r-combinações de com repetição pedindo por todas as r-combinações, onde cada elemento aparece “r” vezes.

RCombRepetition := proc(n::posint, r::posint) 
local repeatlist, i; 
    repeatlist := [ seq( i $ r, i=1..n) ]; 
    combinat[choose](repeatlist, r); 
end: 
RCombRepetition(3,2); 
RCombRepetition(4,3); 

(Notas sobre o procedimento: O “i $ r” significa repetir “i” r vezes.

1 $ 3; 
happy $ 4; 

Além disso, nós precisamos usar uma lista em vezes de um conjunto, já que o Maple automaticamente remove elementos repetidos em um conjunto e nós perderíamos todas as repetições.)

happylist := [ happy $ 4]; 
happyset := happy $ 4 ; 
3. Encontre o número de resultados possíveis em uma partida de dois times quando o vencedor é o primeiro time a ganhar 5 de 9, 6 de 11, 7 de 13 ou 8 de 15 jogos.

Solução Nossa solução vai usar o procedimento Maple chamado “permute” para computar o número total de maneiras que um torneio de jogos pode ser jogado. Vamos começar construindo duas listas que observa como cada um dos dois times pode ganhar. Nós iremos atribuir as duas do time 1 vencendo o torneio sem nenhuma derrota, e o time 2 vencendo o torneio sem nenhuma derrota. A cada iteração do loop principal do algoritmo, vamos computar as permutações possíveis de jogos a serem jogados, notando que a ordem de vitórias é importante para nós. Após essas permutações serem calculadas, nós vamos aumentar o número de jogos que o torneio dura (ou seja, permite o eventual time perdedor do torneio a vencer um jogo adicional). Isso é equivalente a usar um diagrama de árvore para computar os resultados possíveis. O loop externo (while) corresponde ao nível de vértices na árvore, e o loop interior (for) itera sobre todos os jogos naquele nível. A implementação Maple dessa descrição é mostrada abaixo.

Tournaments:=proc(games::integer) 
  local i, one_wins, two_wins, Temp, S; 

Inicialize uma lista para garantir que o time 1 vença

 one_wins:=[seq(1, i=1..ceil(games/2))]; 

Inicialize uma lista para garantir que o time 2 vença

 two_wins:=[seq(2, i=1..ceil(games/2))]; 
  S:={}; 

Percorra até nós termos todos os jogos da série usados

 while nops(one_wins) <= games do 

Calcule os resultados possíveis que completam em jogos exatos

   Temp:=permute(one_wins); 
    for i from 1 to nops(Temp) do 

Garanta que nós realmente precisamos de todos os jogos (ou seja, o último jogo da série foi vencido pelo time 1)

      if Temp[i][nops(one_wins)] = 1 then 
         S:=S union Temp[i] 
      fi; 
    od; 

Calcule os resultados possíveis que completa em jogos exatos

   Temp:=permute(two_wins); 
    for i from 1 to nops(Temp) do 

Garanta que nós realmente precisamos de todos os jogos (ou seja, o último jogo da série foi vencido pelo time 2)

      if Temp[i][nops(two_wins)] = 2 then 
         S:=S union Temp[i] 
      fi; 
    od; 

Incremente o número de jogos, para que o time vencedor do torneio perca um jogo a mais.

   one_wins:=[op(one_wins), 2]; 
    two_wins:=[op(two_wins), 1]; 
  od; 
  S; 
end: 

Agora nós usamos esse procedimento recentemente criado em torneios que são o melhor de “3-de-5” e o melhor de “4-de-7” em número de jogos.

Tournaments(5); 
nops(%); 
nops(Tournaments(7)); 

Ao leitor é deixado explorar os casos restantes, e conjecturar uma fórmula no caso geral.

4. Nós queremos olhar para os coeficientes binomiais . Especificamente, para muitos exemplos, nós queremos determinar se é divisível pelo quadrado de um primo, e se o maior expoente na fatorização do primo cresce sem limites enquanto “n” cresce.

Solução Primeiro tentaremos um exemplo, para ver o que exatamente desejamos fazer, e então escrever um programa.

c := binomial(6,3); 

Nós usamos a função “ifactors” (o “i” significa “integer”) para fatorar “c”. Essa função é uma das várias do Maple que deve ser definida “readlib” antes que possamos usá-la. Isso significa que pedimos para o Maple encontrar a função na sua biblioteca, e carregá-la na sessão atual.

readlib(ifactors): 
ifacts := ifactors(c); 

A página de ajuda para “ifactors” explica o que este resultado significa. Ela diz que . Nós estamos interessados nos expoentes dos primos. Primeiro, pegamos o segundo elemento da lista, para obter a lista dos primos e expoentes.

facts := ifacts[2]; 

Isso nos dá uma lista de listas, onde o primeiro elemento em cada lista é o fator primo, e o segundo é a multiplicidade (o número de vezes que o fator aparece) daquele primo. Então nós queremos percorrer a lista e obter o segundo elemento de cada sublista.

powers := seq(x[2],x=facts); 

Então nós usamos a função “max” para encontrar o maior expoente.

max(powers); 

Se o maior exemplo é maior que 1, então é divisível pelo quadrado de um primo. Nesse caso, o maior exemplo 2 é, de fato, maior que 1, e sem dúvida é divisível por . Combinando esses passos, agora nós escrevemos um programa que dado “n”, retorna o maior expoente na fatorização de .

LargestExpon := proc(n) 
local c, ifacts, x; 
    c := binomial(2*n,n); 
    ifacts := ifactors(c); 
    max(seq(x[2],x=ifacts[2])); 
end: 
LargestExpon(6); 

Agora nós vamos escrever outra rotina que vai calcular o maior expoente para muitos valores de “n”, e armazenar os resultados numa tabela.

Manyn := proc(maxn) 
local results, i; 
  for i to maxn do 
      results[i] := LargestExpon(i); 
      if results[i] = 1 then 
         printf(`Hurray! A counterexample! %d`, i); 
      fi; 
  od; 
  eval(results); 
end: 

Rode o programa e veja o que acontece.

Manyn(10): 

Parece que 1, 2 e 4 são valores de “n” tais que não é divisível pelo quadrado de um primo.

binomial(8,4); 
ifactors(%); 

Agora deixe o programa rodar por muito mais tempo, e veja se nós podemos encontrar algo mais.

vals := Manyn(200): 

Vamos olhar para o crescimento do expoente máximo representando graficamente os resultados.

plot([ seq([i,vals[i]],i=1..200)],style=POINT, 
title=`Growth of Largest Exponents`); 

Para comparar, tente novamente com ainda mais valores de “n”.

vals := Manyn(300): 

Dessa vez, plote com os pontos que participaram, para ver que diferença isso faz.

plot([ seq([i,vals[i]],i=1..300)], 
title=`Growth of Largest Exponents 2`); 

É difícil encontrar quaisquer conclusões desses dois gráficos, além de que não parece ser um limite para o tamanho. O tempo de cálculo está se tornando longo, mas ainda podemos olhada para alguns exemplos maiores.

LargestExpon(500); 
LargestExpon(1001); 
LargestExpon(1005); 
LargestExpon(1007); 
LargestExpon(1009); 
5 . Estime a probabilidade que dois inteiros escolhidos aleatoriamente sejam relativamente primos testando um grande números de pares de inteiros aleatoriamente selecionados. Observe o teorema que dá essa probabilidade e compare seus resultados com a probabilidade correta.

Solução Para resolver esse problema, três coisas devem ser feitas.

  1. Crie um método para gerar pares de inteiros aleatórios.
  2. Produza um grande número desses pares, testando se eles são relativamente primos, e observe a probabilidade estimada baseada nessa amostra.
  3. Observe o teorema mencionado em questão.


Naturalmente, nós deixaremos a parte 3 inteiramente para o leitor. Uma simples aproximação é usar o procedimento do Maple “rand” para gerar uma lista de inteiros aleatórios. Então, tendo gerado tal lista nós podemos testar a coprimalidade de seus membros em pares usando o procedimento Maple “igcd” em um segundo loop. Nós implementamos esses dois loops em um novo procedimento Maple chamado “RandPairs”:

RandPairs := proc(list_size::integer) 
  local i, tmp, randnums, count; 
  randnums := NULL; 

Gera a lista de inteiros aleatórios

 for i from 1 to list_size do 
    tmp := rand(); 
    randnums := randnums, tmp(); 
  od; 
  randnums := [randnums]; 

Conta o números de pares que são coprimos

 count := 0; 
  for i from 1 by 2 to list_size-1 do 
    if igcd(randnums[i], randnums[i + 1]) = 1 then 
      count := count + 1; 
    fi; 
  od; 
  count; 
end: 

Podemos agora executar esse procedimento em 1000 pares de inteiros, como a seguir:

RandPairs(200); 

Então, podemos determinar a porcentagem de pares coprimos usando esse resultado.

evalf(RandPairs(200)/100); 

Observe que repetindo a computação idêntica pode muito bem levar a um resultado de certa forma diferente já que a lista de inteiros que usamos foi gerada aleatoriamente. Você deve tentar isso como uma amostra de tamanho muito maior, digamos 10000 pares de inteiros.